
1. Introduction

The Continuous Media (CM) Player is a tcl/tk

application that supports playback of live digital

audio and video on a Unix workstation. The current

implementation uses a Parallax Xvideo framebuffer

[1] with JPEG image decompression hardware [2].

The recorded video and audio (CM data) is stored on

a file server and delivered to the application using a

protocol based on UDP [3]. In keeping with the tcl/tk

philosophy, the system takes a “toolkit” approach: it

is designed to allow other media types, such as anima-

tion and scientific visualization, to be added into the

system. This abstract describes the CM Player and the

modifications we made to the Tcl/tk toolkit to imple-

ment it.

2. Data Model

The CM Player plays live digital and audio stored

on a file server. Source material is stored as a contig-

uous sequence of frames in conventional Unix files,

called clip files. Sections of clip files are called clips.

For example, one clip might consist of five seconds of

source material in a ten minute video file and another

might be the whole ten minute video. Clips from mul-

tiple file servers can be assembled into streams of CM

data by specifying the playback time of each clip

along a time axis, called the logical time system. This

collection of streams is called a script. Figure 1 shows

the relationships of clips, streams, scripts, and the log-

ical time system.

Notice that source material can be shared among

multiple clips without copying the CM data. In sys-

tems where the assembly and synchronization infor-

mation for streams is stored by interleaving streams

(e.g., MPEG [5] or Microsoft video for windows [7]),

the CM data must be copied to create new streams.

Since 1 second of compressed video can take between

200 and 500 KBytes, this process is expensive both in

storage and in time. Assembling a 5 minute video

sequence will take between 50 and 200 MBytes and

30 to 240 seconds.

Another advantage of this representation is that

source material may be distributed over multiple file

servers. Since video occupies relatively large amounts

of disk space (e.g., 1 hour of NTSC quality video

compressed at 25:1 uses about 1 GB), storing source

material on distributed file servers has distinct advan-

tages. For example, source material need only be

stored once, on one file server, even though it is used

in many different scripts.

3. Process Architecture

The CM Player consists of four communicating

processes: the CM Source, the CM Server, the Appli-

cation, and the X Server. Figure 2 shows the relation-

ship between the processes. The CM Source, CM

Server and Application all use Tcl-DP [4] for commu-

nication.

The application creates the user interface and

establishes a connection with the CM server, identify-

ing the X window id of the video window. The video

window is the window in which video will is played.

The application also reads the script data from a user

selected file and sends a request to the CM Server to

establish connections to the appropriate CM Source

processes.

The CM Source processes read CM data from a

local disk and sends the data over a UDP connection

to the CM Server. The CM Server receives the data,

computes the Unix system clock time for playback

and queues the data for playback at that time using at-

events, a type of time event described in the next sec-

tion. The at-event causes the data to be sent to the X

server at the appropriate time.

A Tcl/Tk Continuous Media Player†

Brian C. Smith, Lawrence A. Rowe, Stephen C. Yen

Computer Science Division

University of California

Berkeley, California 94720

†This material is based in part upon work supported by the
National Science Foundation under Infrastructure Grant
No. CDA-8722788. Additional support was provided by
Fujitsu and Hewlett-Packard.



4. Tk Modifications

Tcl/tk supports events from 4 sources. Events can

be X-events, file-events, timer-events or idle-events.

File-events call a function when a file becomes read-

able, writable, or an exception occurs on the file.

Timer-events arrange for a function to be executed

after a specified time has elapsed. Idle-events arrange

for a function to be called when there is no more use-

ful work to do (i.e., just before the process is put to

sleep on a select call). Events are processed in the fol-

lowing order: X-events are processed first, then file-

events, followed by timer-events and idle-events.

We modified the event loop to add a new event

type, at-events. At-events arrange for a function to be

called when the Unix system clock reaches a specified

value. At-events are distinguished from timer-events

in three ways. First, at-events are processed with the

highest priority. That is, they are processes before X-

events, file-events, timer-events, or idle-events. Since

at-events are used to schedule the playback of CM

data, close synchronization can be maintained only

when they have high priority. Second, at-events are

specified in absolute (i.e., Unix system clock) time,

not relative time. This is significant only in the func-

tional interface, since timer-events are stored inter-

nally in absolute time. Finally, at-events use a heap

structure to store the events, whereas timer-events are

stored in a linked list in the current Tcl/tk implemen-

tation. Heaps provide efficient insertations and dele-

tions when large number of at-events are in the queue,

a situation that commonly arises in our player.

5. Networking

The CM Source sends data to the CM Server

using a protocol built on top of UDP. Tcl-DP provides

a connect tcl command used to create the UDP socket,

and a filehandler is created that calls a receiving func-

tion when data arrives on the UDP socket. This

receiving function performs many functions. It strips

protocol headers, assembles the (possibly frag-

mented) frame, schedules their playback using at-

events, and requests retransmission of lost data. If it

detects many lost packets, it sends feedback to the

source using the Tcl-DP RDO facility (a type of non-

blocking RPC) to request that the source reduce it’s

transmission rate. This adaptive feedback technique

dramatically improves the perceived quality of video

at the destination in the presence of changing network

conditions.

The CM Source sends data to the CM Server a

small amount of time (typically 0.5 seconds) before it

is needed for playback. This delay reduces the effect

of jitter in the network and allows the CM Server to

request retransmission of lost packets. The CM

Source determines which frames to send based on the

value of the Logical Time System (LTS).

The LTS specifies a linear mapping from the

value of the Unix system clock to logical time. That is

Speed is a real number that determines the rate at

which logical time advances relative to system time.

A speed of 1.0 corresponds to normal playback, a

speed of 2.0 corresponds fast forward, and a speed of

-1.0 corresponds to reverse play. Offset is used to pro-

vide random access to various sections of the script.

By appropriately setting offset, any part of the video

may be accessed.

The speed and offset values are encapsulated in a

Tcl-DP distributed object that is shared among the

CM Source, CM Server, and Application processes.

LogicalTime Speed SystemTime× Offset+=

Video stream

Audio stream

clip file 1 clip file 2

clip clipclip

A Script

LTS

Figure 1: Scripts ,streams, clipfiles, clips and the LTS



The Unix system clocks on all machines are synchro-

nized using the Network Time Protocol [6]. When the

Application changes the speed or offset of the lts (e.g.,

by pressing the “play” button), the changes of passed

on to the CM Server and CM Source processes. The

CM Source has triggers that detect the changes in the

lts and start the flow of CM data.

Notice that this method of transmission avoids

explicit requests by the CM Server for CM data. Early

experiments with request/response protocols indi-

cated that the latency introduced by the protocols was

intolerable. Moreover, request response protocols do

not scale well to high latency networks. By using the

lts to implicitly request data, we expect our solution to

scale well to high latency networks.

6. Conclusion

In this abstract, we described the design of a CM

player based on Tcl/tk. The system has several novel

features, including the ability to store CM data on

multiple file servers, the use of the logical time system

and Tcl-DP to passively determine the CM data to

send, and the use of feedback to adjust the playback

rate in the presence of variable network load.

The performance of the system is quite good. On

our departmental 10 MBit ethernet, we typically

achieve playback rate of 24 frames per second on 320

by 240 full color video. This corresponds to a

throughput of approximately 2.5 MBits/sec. When

higher data rates are required (e.g., for 640 by 480

video), the adaptive feedback algorithm that slows the

transmission at the source maintains high quality

video.

References

[1] X Video Users Guide, Parallax Graphics, Santa

Clara, CA, 1991

[2] Gregory K. Wallace, The JPEG Still Picture

Compression Standard, CACM, Volume 34,

No 4, pp 30-44, April 1991.

[3] Stephen G. Kochman, et. al, Unix Networking,

Hayden Books, Carmel, IN,

[4] Brian C. Smith, et. al, Tcl Distributed Program-

ming, Internet Software Distribution, Univer-

sity of California, Berkeley, CA, 1993

[5] Didier Le Gall, MPEG: A Video Compression

Standard for Multimedia Applications, CACM,

Volume 34, No 4, pp 46-58, April 1991.

[6] Mills, D., Measured performance of the net-

work time protocol in the internet system, Net-

work Working Group, RFC 1128 (October

1988).

[7] Tom Yager, Inside Video for Windows, BYTE

Magazine, Special Issue, Spring 1993, pp 57-60

File Server

CM Source

(video)

Client Workstation

Playback

Application

CM

Server

X

Server

Shared

Memory

CM Source

(audio)

Tcl-DP

UDP

UDP
Tcl-DP

Tcl-DP

Figure 2: The CM Player Processes


